If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-90=z
We move all terms to the left:
z^2-90-(z)=0
We add all the numbers together, and all the variables
z^2-1z-90=0
a = 1; b = -1; c = -90;
Δ = b2-4ac
Δ = -12-4·1·(-90)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-19}{2*1}=\frac{-18}{2} =-9 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+19}{2*1}=\frac{20}{2} =10 $
| 160+12m=100 | | x-2+x+6=180 | | (5x-8)+67=97 | | m-18=124 | | −16=7x+4−3x | | n+27=215 | | 37+(3x+47)=(5x+42) | | w+1/7=13/14 | | 39x=225 | | 37+(3x+47)=(5x+72) | | 9x-19=360 | | 1/(5x^2)=5x^-2 | | -13.5-11x=-87 | | √7x-17+19=21 | | x-0.20=48 | | 6=8-3(x+4) | | 1+(x+1)+8x=3 | | 6x-2x-12=192 | | 2-3(x+3)+4=3 | | x-2*x+6=180 | | 4x+7x-8x-5=7 | | (7x+6)+(4x)=(116) | | (4x)=(x+17)=(9x-3) | | -3(x-3=36 | | x+0.26x=$4 | | Y=15x-84 | | 64=-9s+6 | | 2x+60=2x+28 | | x+4+x+4+x+4+x+4+10.2+10.2= | | P=70n-15 | | 2x=111x | | -4k-4=-20 |